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Abstract. Isotropic random flights, where the number of individual flights N is random, 
are studied. N is taken to be governed by a Poisson distribution and also by a negative 
binomial distribution, each with mean ( N ) .  The probability density function of the length 
of the vector sum is shown to be mixed, in that it contains impulse components (Dirac 
delta functions) as well as the absolutely continuous component. The limiting density 
functions are also obtained, and in the negative binomial case lead to the random flight 
version of the K-density function introduced by Jakeman and collaborators. Finally, the 
moments about the origin are explicitly evaluated for both fixed N and random N. 

1. Introduction 

The problem of isotropic random flights arises in a variety of physical and technical 
areas. Rayleigh (1919), Chandrasekhar (1943) and Flory (1969) have summarised 
the formal development of the analysis leading to the probability density function 
(PDF) of the length of the resultant vector sum in terms of an infinite integral with 
an oscillatory integrand. When the lengths of the flights are equal, the integral can 
be evaluated explicitly in terms of polynomials with a different polynomial in each 
subinterval between discontinuities in slope; Treloar (1946) and Vincenz and Bruck- 
shaw (1960) have independently determined the polynomials. A purely numerical 
approach to the evaluation of the integral was advocated by Jernigan and Flory (1969). 
Barakat (1973) considered the more general situation where the length of each flight 
is random and employed the sampling expansion to evaluate the integral. 

The purpose of the present paper is to extend the analysis to the situation where 
the number of flights, N, is also allowed to be random. Applications of the results to 
some physical problems (in solid state) are the subject of a second paper in preparation. 
The discrete random variable N is taken to obey a Poisson distribution, and a negative 
binomial distribution. The negative binomial distribution often gives an adequate 
representation when the strict randomness requirements for the Poisson distribution 
are not approximated sufficiently closely. The resultant radial density functions are 
shown to be mixed because they contain impulse (Dirac delta function) components 
in addition to the absolutely continuous components. The limiting form of the radial 
density functions as the average number of flights is increased is also examined; in 
the negative binomial case it is shown that the limiting form is a K-density function. 
The first four moments about the origin are also explicitly evaluated for both fixed 
and random N for the general case where the individual flights are random, and their 
asymptotic behaviour is investigated. Finally, some remarks pertinent to infinitely 
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divisible density functions and to stable density functions in the context of the random 
flight problem are discussed. 

Such generalisations of the corresponding two-dimensional walk problem have 
already been studied with regard to problems in light scattering, photoelectron count- 
ing, laser speckle patterns, multipath propagation, etc. Some references are: Barakat 
(1981), Barakat and Blake (1976), Barakat and Cole (1979), Chen and Tartaglia 
(1972), Chrostowski and Zardecki (1978), Hoenders el  al (1979), Jakeman 
(1980a, b, containing extensive references), Jakeman and Pusey (1973, 1976, 1978), 
Pusey (1977), Schaefer and Pusey (1972). 

2. Deterministic N 

We seek the PDF of the length R 3 IRI of the vector sum 
N 

n = l  
R =  1 r,  

and call i t  f ( R  IN). The r ,  are statistically independent vectors possessing isotropic PDFS 

w(r,) = (4r2)-’w(rn), r, = lr,l, (2.2) 
The corresponding characteristic function of r is the three-dimensional Fourier trans- 
form of w (r,), which because of isotropy becomes 

where pn = /pnI. The characteristic function of their sum, A(plN),  is the product of 
the individual characteristic functions because the individual vectors are statistically 
independent. We are interested in the case where all vectors r, have the same density 
function 

As shown in Chandrasekhar (1943), f (R IN) is given by 

When N is large, the characteristic function behaves as a Gaussian in the vicinity 

(2.6) 

of the origin, 

A ( p IN) - exp(-q 2p 2), 

q = (N(r2)/6)’/2. (2.7) 

where 

The corresponding density function is Maxwellian, 

~ ( R I N )  = ( 2 , p 2 q - 3 ~ 2  exp(-~*/4q’) .  

If all the flights are of equal fixed length I 
w (r) = r-2S(r - I )  
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and 
m 

( r Z k )  = Jo rZk+’w(r) dr = l z k .  

For flights obeying a rectangular density function 

w ( r )  = I / ? ,  O s r s l ,  

= 0, elsewhere, 

it follows that 

( r z k )  = lZk/ (2k  + 1). 
The respective q’s are: 

(a) Dirac density function 

(b) rectangular density function 

q = (NZ2/6)”2, 
q = (N12/18)’/2 
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(2.10) 

(2.11) 

(2.12) 

The sampling theorem has been used to evaluate f (RIN)  in terms of sampled 
values of A(p lN) ,  when A(plN) is a band-limited function (Barakat 1973), in place 
of direct quadrature of equation (2.5). The expression is 

f(RlN)=2(:) f (Y)A(Y\N)s in (? ) ,  m r R  O S R S B ,  
m = l  

= 0, elsewhere. (2.13) 

Here, B = NP, where P is that value of r for which w ( r )  0 if r > p. The smoother 
f (R IN), the more rapid is the convergence of its Fourier series expansion. Reference 
is made to the original paper for the derivation of equation (2.13) and representative 
numerical results. 

The radial distribution function F(R‘IN), which is the probability that R ’ >  B, is 

(2.14) 
R’ 

F ( R ’ ~ N )  = J f ( ~  I N )  dR. 
0 

F(R’1N) can also be expressed as a Fourier series 

= 1, R‘>B. (2.15) 

The moments about the origin (RZkIN), k = 0, 1 , 2 ,  . . . , can be evaluated by 
differentiation of the characteristic function, equation (2.4).  The first four moments 
are: 

( R ~ ~ N )  = N ( r Z ) ,  

( R ~ ~ N )  = N ( ~ ~ ) + $ N ( N -  l)(r’)’ ,  

( R ~ ~ N )  = N ( ~ ~ ) + ~ N ( N  - 1 ) ( r 2 ) ( r 4 ) + F ~ ( ~  - 1 ) ( ~ - 2 ) ( ~ ’ ) ~ ,  

(R*IN)  = N ( ~ ’ ) + N ( N  - I ) E ( ~ ~ ) ’ +  12(r2)(r6)] 

+ 4 2 N ( N -  1)(N-2)(r2)2(r4)+~N(N-1)(N-2)(N-3)(r2)4. (2.16) 
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When all flights are of equal length, these expressions reduce to those listed in Flory 
(1969).  For large N, the moments behave as 

( R Z k l N ) -  1 * 3 9 5 . . . ( 2 k  + 1 ) ( 2 ~ ' ) ~  (2.17)  

with q given by equation (2 .7) .  These asymptotic moments are those of a Maxwell 
PDF, equation (2.8). 

The rate at which the moments approach their limiting values given by equation 
(2.17) depends upon w ( r ) .  Consider the moment ratios 

(2.18) 

- 1 f ( l / N ) d 2 k  + o ( l / N 2 ) ,  (2.19) 

where d Z k  depends upon w ( r ) .  Note that D 2  = 1 for all N.  For flights of equal fixed 
length, we have 

(2 .20)  2 6 12 d 4 = - 5 ,  d 6 = - 3 ,  d 8 = - 7 ,  

while for flights obeying a rectangular density function 
6 d -E.  & = & ,  dci=Z,  8 - 2 5  (2.21) 

The values of the d's are negative for the fixed length case and five times larger in 
magnitude than the corresponding d's for the rectangular density case. Thus, as we 
would expect, the rectangular density moments approach their limiting values more 
rapidly than do the fixed length moments. A similar phenomenon occurs in the 
two-dimensional situation (Barakat and Cole 1979). 

3. Random N: Poisson distribution 

We now consider the situation where in addition N is also allowed to be a random 
variable governed by a probability distribution P ( N ) .  By elementary probability 
theory, the characteristic function A (  p )  and radial density function f ( R )  are given by 

cc 

In this section, P ( N )  is taken to be a Poisson distribution 

P ( N )  = ( I / N ! ) ( N ) ~  e-(N), (3 .3)  

where ( N )  is the average of N with respect to the Poisson distribution. We alter the 
notation and write A ( p )  = A ( p l ( N ) ) ,  f ( R )  = f ( R  l (N))  to denote the explicit depen- 
dence on ( N ) .  

The characteristic function can be written in closed form 



Isotropic random frights 3077 

The corresponding radial density function can be expressed, using equation (2 .5 ) ,  in 
the form 

Now f ( R  I(N)) is a mixed density function because it contains impulse (Dirac delta 
function) components in addition to the absolutely continuous components. This is 
easily seen by direct examination of equation (3 .2 )  and noting that 

f(RlO)=S(R). (3.6) 

f(R11)=6(R - 1 ) .  (3.7) 

In the special case where all flights are of fixed length 1, 

However, f ( R  IN) is absolutely continuous for N L 2 .  As ( N )  increases, the impulse 
terms tend to zero. Figures 1 and 2 show the behaviour of the absolutely continuous 
component of the radial density function f(RI(N)) for ( N ) =  1, 3, 4 and flights of 
equal deterministic length. When the flights are governed by a rectangular density 
only f (R  10) contributes a Dirac delta function. Furthermore, the radial density 
functions f ( R  IN) are practically Maxwellian for N z 3, see figures 3 and 4 of Barakat 

R 

Figure 1. Absolutely continuous component of radial density function for flights of equal 
length: ---(AI)= 1; - (N)=4. 

R 

Figure 2. Absolutely continuous component of radial density function for flights of equal 
length when ( N )  = 3. 
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R 

Figure 3. Absolutely continuous component of radial density function when individual 
flights are governed by rectangular density functions: - - - ( N )  = 2, - ( N )  = 3 ,  - . - . - 
( N )  = 4. 

(1973). Consequently, the absolutely continuous component of F (R  l (N))  will be very 
smooth, even for small ( N ) .  This is borne out by the numerical calculations displayed 
in figure 3 .  

When ( N )  is large, the characteristic function A ( p l ( N ) )  behaves as a Gaussian in 
the vicinity of the origin, 

In analogy with equation (2.8), f (RI(N))  is also Maxwellian. This is to be expected; 
as ( N )  is increased, the Poisson distribution becomes very peaked around ( N )  = N 
and behaves somewhat like a Dirac delta function centred at ( N )  = N. Consequently, 
the dominant term in the series, equation ( 3 . 2 ) ,  is the term ( N )  = N. 

The corresponding moments ( R Z k l ( N ) )  are easily evaluated. They are given by 

(3.10) 

Substitution of the appropriate (Rzk1N) from equation (2.16) and subsequent summa- 
tion of the series yields the desired expressions. The first four are: 

( 3 . 1 1 )  
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The large ( N )  limit of these expressions is the same as for the large N limit, equation 
(2.17), with N -* ( N ) .  

The rate of approach of these moments to their limiting values will be characterised 
by the moment ratios S Z k  analogous to D2k, 

(3.12) 

The S2k also depend upon w ( r ) .  S2 1 for all ( N ) .  For flights of fixed length 

(3.13) 3 9 18 
s 4 = 3 ,  s 6 = 5 ,  s 8 = 3 ,  

while for flights obeying a rectangular density 
27 81 162 

s4 = E, s 6 = % 7  s g = x .  (3.14) 

The S2k are positive in both cases, thus SZk 2 1. Because the rectangular density values 
of the s2k are as large as those for the fixed length case, we now have the opposite 
situation to that for the deterministic N case, namely that the rectangular density now 
has a slower rate of approach to the limiting value than the fixed length case. 

4. Random N: negative binomial distribution 

We next examine the case where N is governed by a negative binomial distribution 
function. In the two-dimensional random walk, this problem has been studied by 
Jakeman and associates; a summary of their work is given in Jakeman (1980a). When 
the average number of flights is large, they show that the limiting radial density 
function is governed by a modified Bessel function of the second kind which they 
term a K-density function (see also Siddiqui and Weiss 1963). 

The negative binomial distribution referred to its mean ( N )  is given by 

N +a - 1 ( ( N ) / c Y ) ~  
P ( N ) = (  N ) ( l + ( N ) / a ) N + a  (4.1) 

where a is real and al. As in the Poisson case, f(RI(N)) is also a mixed density 
function containing an impulse component at the origin. There is an additional impulse 
component at R = 1 when all flights are of equal deterministic length 1. The strengths 
of these impulse components tend to zero as ( N )  increases although at a slower rate 
than for the Poisson case. For example, the N = 0 component for the Poisson case 
at ( N )  = 4 is 0.0183, while the corresponding component for the negative binomial 
with CY = 2 is 0.1111 and with a = 10 is 0.0345. 

The characteristic function A(pl(N)) can be evaluated in closed form in much the 
same manner as in 0 3. The final result is 

A(Pl(N)) = U  +((N)/a)[1 -A(Pll)ll-a. (4.2) 

A ( P  - exp{-(W[1 -A ( P  I1)I) (4.3) 

( l+b /a ) -*  -ePb(1-b2/2a + , . .I. 

For fixed ( N ) ,  and increasing a, we have 

upon using the fact that for large a 

(4.4) 
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Thus, when a is very large, the characteristic function A(pl(N)) and density function 
f ( R  J(N)) approximate those in 5 3 devoted to the Poisson distribution. 

For arbitrary a and large ( N ) ,  the characteristic function behaves as 

A(pIW))-(l  +q:p2)-" (4.5) 

in the vicinity of the origin, where 

q2 = ( ( N ) ( r 2 ) / 6 a ) l i 2 .  (4.6) 

Note that q2 now depends upon the parameter a.  The corresponding radial density 
function is 

2R 
'rrq2 0 

f ( R  [ ( N ) )  = 7 I x (1 + x ' ) - ~  sin (4.7) 

The integral can be evaluated by differentiation of the known integral (Watson 1944) 

where K is the modified Bessel function of the second kind, and the reduction formula 

(4.9) 
d 
- [y "K, ( y  )I = - y  "Kv- 1 ( y  ). 
dY 

The final result is 

(4.10) 

which is the random flight version of the K -density function. 
The moments about the origin, (RZk1(N)) ,  as evaluated by direct summation 

(4.11) 

yield for the first four moments: 

(R21(N)) = ( N ) ( r 2 ) ,  

4 2 ( a + l ) ( a + 2 )  3 2 2  4 3 5 ( a + l ) ( a + 2 ) ( ~ ~ + 3 )  4 2 4  
( N )  ( r  ) ' 3a + 2 ( N )  ( r  ) ( r  )+ a 

(4.12) 
When ( N )  is very large, the dominant term is 

2 k (a  + l ) ( a  +2)  s (a  + k  -1) 
k - 1  a (RZk((N)) - [ l  * 3 4 5 . .  . (2k+1)(2q ) ] (4.13) 
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The term in square brackets is the term characteristic of a Maxwell radial density 
function, see equation (2.17). However, it is modulated by a term depending upon 
the negative binomial parameter a; this term tends to unity as a is made large. 

5. Comments 

The limiting form of the radial density function, equation (2.8), as deterministic N is 
made very large belongs to the class of infinitely divisible density functions. A density 
function is infinitely divisible if its characteristic function is the Nth  power of some 
characteristic function (Gnedenko and Kolmogorov 1964, Petrov 1975). The charac- 
teristic function, equation (2.6), corresponding to the limiting radial density function, 
equation (2.8), can be written 

(5.1) 
The term in square brackets is itself a characteristic function implying that the 
Maxwellian radial density, equation (2.8), is infinitely divisible. The infinite divisibility 
property translates into the condition that the density functions retain their functional 
forms irrespective of the statistical properties of the individual random flights. 

An important subclass of infinitely divisible densities are the stable density func- 
tions. Unlike the infinitely divisible class, for which the distributions can be absolutely 
continuous (i.e. have a density function) or discrete, the stable subclass can only be 
absolutely continuous. When expressed in terms of the corresponding characteristic 
functions, the stable requirement is: a density function is stable if for every real al, 
a 2  > 0 there exist real numbers a > 0, b such that the characteristic functions obey 

1 2  2 N  A(PlN)=[exP(-a(r >P )I =[AbI1)IN. 

A(alp)A(a2p)  = eibpA(ap). (5.2) 
Obviously the limiting characteristic function, equation (2.6), satisfies this equation 
with a 2 = a : + a Z ,  b E O .  Equation (5.2) is equivalent to the statement that the 
convolution of any two radial density functions of the same type is also a rescaled 
version of the same density function. Consequently we can take as a universal 
independent variable R' = R/2q in the Maxwellian radial density, equation (2.8). 

In the mathematical literature (see Gnedenko and Kolmogorov 1964, Petrov 1975) 
it is shown that the class of limit laws for sums of independent random variables as 
deterministic N becomes very large coincides with the class of infinitely divisible 
density functions. Jona-Lasinio (1975) connected the stable subclass of infinitely 
divisible distributions with the renormalisation group approach in statistical mechanics. 
Stable distributions also play a prominent role in Mandelbrot's (1977) theory of 
fractals. 

When we allow the number of flights N to be random, the limiting situation (in 
the sense that (N) -* 00) is more complicated because the theory of such limit laws 
only holds for deterministic N. We must expect that the limiting radial density functions 
will depend upon the structure of the probability distribution governing N. When N 
is governed by the Poisson distribution or the negative binomial distribution, the 
limiting radial densities are infinitely divisible, as the reader can easily verify from 
the corresponding characteristic functions, equations (3.8) and (4.5). We note that 
the Poisson and negative binomial distributions are themselves infinitely divisible. 
Thus if N is governed by these two distributions the limiting radial densities retain 
their functional form. 
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The limiting radial density for Poisson distributed N is also Maxwellian, as noted 
in Q 3; explicitly 

Consequently this limiting radial density is also stable. This result is intuitively obvious; 
when ( N )  is very large, the Poisson distribution acts like a Dirac delta function centred 
about ( N )  = N. Consequently the dominant term in equation (3.2) is ( N )  = N and we 
have the usual argument leading to a stable density. The universal independent 
variable in this case is RI’= R/2ql. 

The limiting K-density function, equation (4.10), is not stable. From a formal 
viewpoint, this is obvious because there does not exist a real a > 0 such that 

(5.4) 2 2 2 - a  2 2 2 - a  2 2 2 - c r  ( l + q ~ a l p  1 ( l + q ~ a z p  1 =(1+42a P 1 . 
The K-density function is governed by two parameters a and q2 (with 4 2  itself a 
function of a). No amount of rescaling can reduce the dependence to just one 
parameter as with the stable Maxwellian density functions. Furthermore, the order 
of the modified Bessel function depends upon a. Although the functional dependence 
is unaltered, the numerical shapes assumed by the K-density depend upon a and 
there is no universal independent variable! 

It would be of some interest to know what subclass of infinitely divisible P ( N )  
leads to stable density functions. 
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